FIRST OBSERVATION OF EXCITED STATES IN THE $T=-1,\,\mathrm{ODD}\mathrm{-ODD}$ NUCLEUS $^{48}\mathrm{Mn}$ - <u>C. Chandler</u>¹, M.A. Bentley¹, M.P. Carpenter², C.N. Davids², R. Du Rietz³, J. Ekman³, S.J. Freeman^{4,2}, P.E. Garrett⁵, G. Hammond¹, R.V.F. Janssens² and D. Seweryniak² - School of Chemistry and Physics, Keele University, Keele, Staffordshire, ST5 5BG, UK Physics Division, Argonne National Laboratory, Argonne, Chicago, IL 60439, USA Department of Physics, Lund University, S-22100 Lund, Sweden - ⁴ Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK - ⁵ Lawrence Livermore National Laboratory, Livermore, CA 94551, USA The Coulomb Energy Differences of mirror nuclei are now well understood in terms of the spatial correlations of the $f_{\frac{7}{2}}$ shell valence particles, in particular the alignment of a pair of protons. To date, however, most studies have been restricted to $T=\frac{1}{2}$ mirror pairs. More recently though, advances in technology have allowed the study of nuclei with increasingly exotic values of isospin such as the T=1 pairs $^{46}{\rm Cr}/^{46}{\rm Ti}$ and $^{50}{\rm Fe}/^{50}{\rm Cr}$. The CED can again be understood in terms of a pp alignment but in both cases of $T=\frac{1}{2}$ and T=1 nuclei the CED show anomalous behaviour at low spin which cannot be attributed to alignment effects. The study of the T=1 mirror pair $^{48}{\rm Mn}/^{48}{\rm V}$ may be of particular importance since they are odd–odd and therefore the first particle alignments are blocked and the CED may give a clearer insight into the behaviour at low spin. In a recent experiment at the Argonne National Laboratory, ⁴⁸Mn was produced in the inverse reaction ⁴⁰Ca + ¹⁰B at an energy of 110 MeV. Gamma rays were detected in the Gammasphere array and recoils were selected by the Fragment Mass Analyser and subsequently identified by Z in an ion chamber. A preliminary analysis shows a sequence of γ rays in coincidence with Z=25 (Mn) recoils which may be attributed to ⁴⁸Mn, representing the first observation of γ decays in this nucleus. Further confirmation of identification is obtained when the energies are compared with those of ⁴⁸V, its mirror partner. ¿From this, a tentative level scheme has been built almost up to the expected band termination at 15⁺. A very intriguing CED analysis will be presented.